

User guide

Carboxyl modified Sensor chips & Amine coupling kit

관련 제품 목록들

Sensor chip lists

목록	용량/pkg	제품번호	권장 분석물질 및 보관
COOH-Au chip	10	PCCH1000	Proteins, Vesicles, Nano- particles, Cells, Peptides, Oligomers 냉장 보관
C-dex100 chip	3	DCCH1100	Proteins, Peptides, Oligomers 냉동 보관
HC1000M chip	3	HCCH101KX	Small molecules 냉동 보관

Buffers & Reagents

목록	용량/pkg	제품번호	용도
HBST buffer (10x)	50ml	RBHT1010-50	운용 버퍼, 평형, washing, dissociation
Amine coupling kit	100 tests	IMAM1000	리간드 (단백질) 고정화
Glycine-HCl 50mM NaOH	50ml	RGGH10NNX	Regeneration

Note: 연구 목적으로만 사용해주세요.

Amine coupling

Amine coupling은 리간드가 단백질인 경우 단백질의 amine을 COOH 센서 칩에 공유결합 시키는 방법입니다. 단백질에는 lysine, arginine 등 amine 잔기를 보유하고 있는 아미노산이 풍부하기 때문에 매우 성공적으로 COOH 센서 칩에 고정시킬 수 있습니다. 이렇게 고정된 리간드는 공유결합이 되어 있기 때문에 regeneration 단계에서 탈착되지 않으며, 단백질 활성이 감소되지 않는다면 계속 사용이 가능한 장점이 있습니다. 하지만 단백질 활성부위가 센서 칩 표면에 고정되어 활성이 저하되는 경우가 있기 때문에 positive 샘플에서도 신호가보이지 않는다면 다른 고정화 방법 (단백질에 tag이 있다면 비공유 특이결합으로 단백질을 방향성 있게 고정시킬 수 있습니다.)을 선택할 것을 권장합니다.

Amine coupling kit lists

제품번호	구성 품목
IMAM1000	EDC 1 g (Powder) NHS solution, 25 ml Blocking solution, 30 ml 1M NaCl borate buffer, 50 ml Acetate buffer 4.0, 25 ml Acetate buffer 5.0, 25 ml 10X HBST, 50 ml

Amine coupling kit 분주 및 보관

구성 품목	분주 및 보관	
EDC 1 g (Powder)	1. DIw 25 ml에 용해 2. 150 ul 용량으로 분주 3. 분주 후 냉동보관	
NHS solution, 25 ml	1. 150 ul 용량으로 분주 2. 분주 후 냉동보관	
Blocking solution, 30 ml	1. 250 ul 용량으로 분주 2. 분주 후 냉동보관	
Acetate buffer 4.0, 25 ml Acetate buffer 5.0, 25 ml	1. 250 ul 용량으로 분주 2. 냉장보관	
1M NaCl borate buffer, 50 ml	실온보관	
10X HBST, 50 ml	실온보관	

센서 칩 장착 및 평형 상태

1 냉장 보관되어 있는 센서 칩을 센서 칩 케이스에서 flat tweezer를 이용하여 조심스럽게 꺼내어 프리즘홀더에 장착합니다.

Note: 센서 칩 케이스에 붙어 있는 면이 프리즘홀더의 프리즘과 결합되는 면입니다. 센서 칩을 반대로 장착하면 재사용 시 100% 성능이 보장되지 않습니다.

2 1X HBST 버퍼로 Priming을 진행한 후 1M NaCl borate buffer를 3~5분 정도 센서 칩을 washing 해 줍니다.

Note: 10X HBST 버퍼는 실험 바로 전에 DIw에 10배 희석하여 준비 해 줍니다.

Ligand 고정화

1 냉동/냉장 보관되어 있는 EDC (150 ul), NHS (150 ul), Blocking solution (250 ul), regeneration 버퍼를 모두 실온에 준비합니다.

Note: Ligand 물질은 물질 특성에 맞게 준비합니다. 실온에 준비한 후 가능한 신속하게 실험을 진행합니다.

2 Activation: EDC, NHS를 1:1로 혼합하여 300 ul를 준비한 후 5~10 분 센서 칩에 흘려주어 COOH 표면을 NHS 표면으로 만들어 줍니다.

Note: activation 단계의 권장 유속은 10~30 ul/min 입니다.

3 Ligand 고정화: Ligand를 acetate buffer (pH4.0 ~ 5.5)에 1~100 ug/ml 농도로 희석하여 1~30분 동안 주입해 줍니다.

Note: 목표 고정화 레벨에 따라 시간, 유속, 농도를 조절하여 고정화 단계를 수행해 줍니다.

4 Blocking: Blocking solution 을 5분 동안 (유속 30 ul/min) 주입해 줍니다.

Note: analyte와의 결합을 수행한 결과 비특이적 흡착이 많다면 serum albumin을 100 ug/ml로 제조하여 blocking 단계전에 추가로 수행해 줍니다.

5 Pre regeneration: 비공유결합으로 흡착된 ligand를 탈착 시키기 위해 regeneration 버퍼를 1~5회, 3분 (유속 50 ul/min) 조건으로 수행해 줍니다. 수행 횟수는 ligand 탈착 여부를 모니터링하면서 결정합니다.

Analytes 분석

1 더 이상 탈착 되는 신호가 관찰되지 않고, 센서그램 평형 상태가 관찰된다면, analyte를 분석해 줍니다. 대표농도 1~3 가지 (100 nM, 1 uM, 10 uM) 정도를 우선 주입하여 신호가 있는지 확인합니다.

Note: chemical의 경우 100 uM까지 수행해야 하는 것을 권장합니다.

2 신호가 감지 되었다면 포화 농도라고 판단되는 농도부터 2배씩 희석 하여 5개 이상의 농도별 센서그램을 획득합니다. 농도 0 nM (러닝 버 퍼) 역시 센서그램을 획득하여 결합 외 신호에 대한 보정 작업에 활용 합니다.

Note: kinetics evaluation을 위해서는 유속을 50 ~70 ul/min으로 진행할 것을 권장합니다. 해리가 잘 되지 않는 결합의 경우 해리 구간을 결합구간 대비 5~10배 (일반적으로는 2배) 길게 진행해 줄 것을 권장합니다.

Regeneration

해리가 완전히 되지 않는 결합의 경우 regeneration 버퍼를 이용한 regeneration 단계가 필요합니다. 여러 농도를 분석하기 위해서는 농도와 농도 사이에 regeneration을 수행해 줍니다. Glycine-HCl pH2.5 용액을 우선 평가한 후 완벽하게 regeneration이 되지 않는다면 pH1.5 용액으로 변경하여 수행해 줍니다. Glycine 기반의 용액으로 regeneration이 잘 되지 않는다면 NaOH로 변경하여 수행해 줍니다.

Ligand 센서 칩 보관

아이클루바이오에서 제공하는 Storage kit을 이용하여 ligand가 고정 된 센서 칩을 보관할 수 있습니다. 프리즘 홀더에 전용 storage FM을 장착한 후 glycerol buffe를 로딩해 주세요. Ligand의 특성에 따라 다 르지만 1개월 이상 보관 후 사용이 가능합니다.

Note:

- 1. 더 자세한 설명은 장치 구입시 제공받은 핸드북을 참고해 주세요.
- 2. www.icluebio.com에서 제공되는 Application Note 1, 2, 3, 4는 모두 COOH sensor chip을 기반으로 작성되었습니다. 실험법을 참고해 주세요.

www.icluebio.com

icluebio의 센서 칩과 버퍼 및 시약류는 대한민국에서 제조되며, specialist의 정밀한 품질검사를 통해 고객에게 최종적으로 전달됩니다. 소모품 중 일부는 독일의 Xantec 사의 제품을 공급하고 있습니다.

제품문의: 031-757-6180, 학술사업팀 담당자

이메일: sales@icluebio.co.kr